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We study the spinless and spinful extended Hubbard models with repulsive interactions on the kagome and
the decorated honeycomb �star� lattice. Using Hartree-Fock mean-field theory, we show that interaction-driven
insulating phases with nontrivial topological invariants �Chern number or Z2 invariant� exist for an experimen-
tally reasonable range of parameters. These phases occur at filling fractions which involve either Dirac points
or quadratic band crossing points in the noninteracting limit. We present comprehensive mean-field phase
diagrams for these lattices and discuss the competition between topologically nontrivial phases and numerous
other ordered states, including various charge, spin, and bond orderings. Our results suggest that Z2 topological
insulators should be found in a number of systems with either little or no intrinsic spin-orbit coupling.
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I. INTRODUCTION

The study of topological properties of a quantum system
with many degrees of freedom can provide insights into glo-
bal features of ground states and can reveal physical behav-
iors which are robust against weak perturbations. While the
terminology of topological order has been used to describe
different aspects of a quantum system with interactions,1–3

we will focus on topological properties which are stored in
the set of single-particle wave functions describing band
structures of materials with a bulk gap. One famous example
is the integer quantum Hall effect where the topological
property is encapsulated in an integer called the Chern num-
ber. It has been shown that the Chern number is directly
related to quantized values of the Hall conductivity.4 A non-
zero Chern number requires the breaking of time-reversal
symmetry either by an external magnetic field or, in the ab-
sent of a net magnetic flux through a unit cell, by micro-
scopically circling currents.5

Breaking of time-reversal symmetry is not necessarily re-
quired to define topological invariants which distinguish dif-
ferent bulk insulators �or superconductors�. Based on the ran-
dom matrix theory, a comprehensive classification scheme
for noninteracting systems has been worked out.6 Among all
classifications, topological insulators �TIs� with time-reversal
symmetry have raised considerable interest in recent years
�see Refs. 7–9�. TIs are well described by conventional band
theory. However, they are a distinct phase of matter with
bulk energy gaps and an odd number of time-reversal sym-
metry protected gapless modes on their edge �surface in three
dimensions�.10–12 In two dimensions, it is also termed the
quantum spin Hall state. This state is distinct from ordinary
insulators by a nonzero value of a Z2 invariant.10,11 In three
dimensions, there are four Z2 invariants characterizing either
a strong topological insulator, a weak topological insulator,
or a trivial insulator.12–14 The Z2 invariants can be obtained
via knowledge of the single-particle wave functions alone.

The key to experimental realizations of TIs �at least so
far� is strong intrinsic spin-orbit interaction originating from
relativistic effects. The topologically nontrivial behavior in
these systems is stabilized by a strong spin-orbit coupling

which leads to a “band inversion.”15–17 While the experimen-
tal search for the TIs in real materials with strong spin-orbit
coupling is still under way with a number of examples found
to date,18–25 the current theoretical research in TIs is quite
diverse. On the one hand, there have been intensive first-
principles studies to identify potential candidate materials for
TIs.26–30 On the other hand, the study of TIs in the presence
of disorder31,32 and interplay of spin-orbit coupling and
electron-electron interaction33,34 have been carried out. New
exotic phases have been proposed, such as a topological
Mott insulator,33 which has a gapped charge sector but gap-
less spinon excitations on the boundary.

In the present paper, we focus on yet another class of
systems in which the topologically nontrivial nature of the
wave functions is a result of spontaneously broken symmetry
in an interacting system.35–37 These interaction-driven topo-
logical insulators possess conventional order parameters and
the topological order is locked to those. Microscopically, the
topological phases are described by the spontaneous genera-
tion of �spin� currents, a popular theoretical idea which has
been used in many variants for describing the pseudogap
phase of the cuprates.38–41 However, in contrast to these cu-
prate models defined on the square lattice, a gap can be
opened over the whole Brillouin zone in certain other
lattices35–37,42 allowing one to characterize the phase by a
topological invariant. For example, in Ref. 42 a double-
exchange ferromagnet has been studied on the kagome lat-
tice and the ground state has been described as a chiral spin
state with a finite Chern number. Later, Raghu et al. studied
an extended Hubbard model on the honeycomb lattice and
showed that both a quantum anomalous Hall �QAH� phase
and a quantum spin Hall phase can be generated
dynamically.35 A similar idea has also been used to obtain a
three-dimensional example of an interaction-driven topologi-
cal insulator on the diamond lattice.36

In our paper, we focus on spinless and spinful extended
Hubbard models with repulsive interactions on the kagome
and decorated honeycomb lattice. Interacting electrons on
the kagome lattice provide a model system where ferromag-
netism can be rigorously shown for certain parameters
�flat-band43,44 and kinetic45 ferromagnetism�. Furthermore,
the Mott transition in the standard Hubbard model defined on
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this lattice has been studied.46 In addition to these examples,
a great deal of the theoretical work on Hubbard and extended
Hubbard models has focused on the case of half filling where
the low-energy degrees of freedom are described by a frus-
trated quantum spin model.47–50 These studies are motivated
in part by the recent discovery that herbertsmithite, a spin-
1/2 kagome antiferromagnet, might support a spin-liquid
ground state.51,52 Another system where the physics of inter-
acting electrons on the kagome lattice might be important is
NaxCoO2 where the orbital degrees of freedom give rise to
four interpenetrating kagome systems.53,54

The decorated honeycomb lattice can be viewed as an
interpolating lattice between honeycomb and kagome. While
there are few known examples of this lattice in nature,55 the
exact ground states of the Kitaev model on this lattice have
been found by Yao et al.56 and other higher symmetry spin
models have been studied as well.57 Yao et al.56 has shown
that the exact ground state of the Kitaev model on this lattice
is a chiral spin liquid that spontaneously breaks time-reversal
symmetry. There are two topologically distinct chiral spin-
liquid phases: �i� a topologically nontrivial phase with odd
Chern number and nonabelian vortex excitations and �ii� a
topologically trivial phase with even Chern number and abe-
lian vortex excitations. In our previous work,58 we have
found that this lattice also supports a TI phase in the pres-
ence of spin-orbit coupling at various filling fractions, and
we established a connection between the topologically non-
trivial chiral spin liquid state of the Kitaev model �appropri-
ate for strongly interacting electrons with spin-orbit cou-
pling� and the ground state of Z2 topological band insulators
�studied in the noninteracting limit�.

Both the kagome and decorated honeycomb lattices sup-
port a TI in a single-orbital tight-binding model with spin-
orbit coupling.58,59 In this paper, we show that a TI �quantum
anomalous Hall state for the spinless case� can also be inter-
action driven on both lattices. We focus on filling fractions
which either involve a pair of Dirac points �1/3 filling in the
kagome system� or a quadratic band crossing point �QBCP�
�2/3 filling in the kagome and 1/2 filling in the decorated
honeycomb system� in the noninteracting tight-binding
model.60 Using a Hartree-Fock mean-field approach, we dis-
cuss various possible symmetry-broken states, present the
phase diagrams and highlight the competition between vari-
ous states. We find pronounced differences for different fill-
ing fractions. In particular, a topologically nontrivial phase is
the leading instability at 2/3 filling on the kagome lattice and
1/2 filling on the decorated honeycomb lattice. On the other
hand, to stabilize a topologically nontrivial phase at 1/3 fill-
ing on the kagome lattice, some fine tuning of the interaction
parameters is required. We also point out that the kagome
and decorated honeycomb lattices provide examples where
topological phases can emerge solely due to a complex
nearest-neighbor hopping, in contrast to the honeycomb or
diamond lattice in which a complex second neighbor hop-
ping is required, at least within a single band model.

The paper is organized as follows. In Sec. II, we introduce
spinless and spinful extended Hubbard models on the
kagome and decorated honeycomb lattices, and review the
tight-binding band structures and Hartree-Fock mean-field
approach for the implementation of numerical calculations.

In Secs. III and IV, we discuss several symmetry-breaking
candidate phases and present phase diagrams of spinless and
spinful extended Hubbard models at 1/3 and 2/3 filling frac-
tions. We find the topologically nontrivial phases can be sta-
bilized under suitable circumstances. Comparisons are also
made to related work. Then, in Sec. V we briefly discuss the
spinless extended Hubbard model on the decorated honey-
comb lattice. Finally, we present our conclusions and sum-
mary in Sec. VI.

II. MODELS AND METHODS

We first introduce the models which will be studied later
by means of the Hartree-Fock approximation. We consider
both spinless �spin-polarized� and spinful interacting fermi-
ons in a single-orbital Hamiltonian on the kagome and the
decorated honeycomb lattice.

A. Extended Hubbard models

The lattice model under consideration for spinless �spin-
polarized� fermions takes the form

Hspinless = − t�
�i,j�

ci
†cj + V1�

�i,j�
ninj + V2 �

��i,j��
ninj + V3 �

���i,j���
ninj .

�1�

Here, ci
�†� annihilates �creates� a spinless fermion on site i

and ni=ci
†ci is the fermion density operator on site i. The

sums run over nearest-neighbor �i , j�, second-neighbor
��i , j��, or third-neighbor bonds ���i , j���. The hopping ampli-
tude is denoted by t and the parameters V1, V2, and V3 quan-
tify the nearest-neighbor, second-neighbor, and third-
neighbor repulsion, respectively. For most parts of our work,
we set V3=0. However, as we show later, a small but finite
V3 is necessary to stabilize a topologically nontrivial insula-
tor for 1/3 filling fraction on the kagome lattice.

The model for spinful fermions includes an additional on-
site repulsive interaction U. The Hamiltonian reads

Hspinful = − t�
�i,j�

ci�
† cj� + U�

i

ni↑ni↓ + V1�
�i,j�

ninj + V2 �
��i,j��

ninj

+ V3 �
���i,j���

ninj . �2�

Here, ci�
�†� annihilates �creates� a fermion on site i with spin

�= ↑ ,↓, ni�=ci�
† ci� and ni=��ni�. The summing convention

and the meaning of the parameters V1, V2, and V3 are the
same as for the spinless model.

B. Kagome and decorated honeycomb lattice

The models in Eqs. �1� and �2� have been studied on the
kagome and the decorated honeycomb lattice in the nonin-
teracting limit.58,59 A section of the kagome lattice is shown
in Fig. 1 and a section of the decorated honeycomb lattice is
shown in Fig. 11. Both lattices share an underlying triangular
lattice and we choose the unit-cell vectors to be
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a1 = �a,0� and a2 = �a

2
,
�3

2
a� , �3�

where a is their length. The kagome lattice has three sites in
the unit cell whereas the decorated honeycomb lattice has
six. The reciprocal lattice vectors are given by

b1 =
2�

a
�1,

− 1
�3

� and b2 =
2�

a
�0,

2
�3

� . �4�

The first Brillouin zone forms a hexagon in momentum space
for both lattices, similar to the honeycomb lattice which also
shares the underlying triangular lattice.

1. Tight-binding band structure on kagome lattice

The noninteracting energy dispersion for a nearest-
neighbor tight-binding model 	first term in Eq. �1�
 can be
obtained analytically. On the kagome lattice, three bands are
found with the following dispersion relation:

�1�k� = − t − tAk, �2�k� = − t + tAk, �3�k� = 2t . �5�

In Eq. �5�, we have defined

Ak = �3 + 2 cos k1 + 2 cos k2 + 2 cos�k1 − k2� , �6�

where k1=a1 ·k and k2=a2 ·k. There are two dispersing bands
�n=1 and 2� and a flat band �n=3�. At filling fraction f
=1 /3, the two dispersing bands touch at two inequivalent
Dirac points located at corners of the Brillouin zone,

K� = � �b1 − b2�/3. �7�

At filling fraction f =2 /3, the second band touches the flat
band at the � point 	k= �0,0�
. This is a QBCP.37 Upon
inclusion of an intrinsic spin-orbit coupling �modeled by a
spin-dependent imaginary second-neighbor hopping�, one
finds that a gap is opened both at the Dirac points �f =1 /3�
and the QBCP �f =2 /3�.59 The resulting insulating state at

f =1 /3 and f =2 /3 is a Z2 topological insulator with time-
reversal symmetry protected edge states.59 In the following
sections, we explore the possibility of dynamically generat-
ing a topological insulator phase from interactions and study
its competition with other broken-symmetry phases. We
therefore focus on f =1 /3 and f =2 /3 in this paper.

2. Tight-binding band structure on decorated honeycomb lattice

Diagonalization of the noninteracting tight-binding model
on the decorated honeycomb lattice gives the following six
bands:

�1�k� = −
t

2
−�9

4
t2 + t�2 + tt�Ak, �8a�

�2�k� = −
t

2
−�9

4
t2 + t�2 − tt�Ak, �8b�

�3�k� = t − t�, �8c�

�4�k� = −
t

2
+�9

4
t2 + t�2 − tt�Ak, �8d�

�5�k� = −
t

2
+�9

4
t2 + t�2 + tt�Ak, �8e�

�6�k� = t + t�, �8f�

and Ak is defined in Eq. �6�. Here, we have introduced inde-
pendent hopping amplitudes for hopping within a triangle �t�
and between triangles �t��.58 There are two flat bands �n
=3,6� and four dispersing bands �n=1,2 ,4 ,5�. For filling
fractions 1/6 and 2/3, there are Dirac points located at K� in
the momentum space. There are also two quadratic band
touching points at k= �0,0�. The lower QBCP appears at f
=1 /2 if t��3t /2 and at f =1 /3 if t��3t /2. The upper QBCP
appears at f =5 /6. In the presence of a spin-orbit coupling,
TI phases are found at various filling fractions.58 In this pa-
per, we set t= t� and solely focus on f =1 /2. Half filling is of
particular interest because a topological connection between
the chiral spin-liquid states recently found in the Kitaev
model56 and the Z2 topological band insulator has been
established.58

C. Hartree-Fock mean-field approximation

We use the standard Hartree-Fock mean-field approach to
decouple the interaction terms in Eqs. �1� and �2�. In contrast
to comparable studies on the honeycomb lattice35,61 and the
diamond lattice,36 we treat the Hartree and Fock terms on
equal footing in all phases.

1. Hartree-Fock approximation in the spinless models

For spinless fermions, we decouple the interaction both in
the direct and the exchange channel,

ninj � ni�nj� + �ni�nj − �ni��nj� − ci
†cj�cj

†ci� − �ci
†cj�cj

†ci

+ �ci
†cj��cj

†ci� . �9�

This procedure yields a mean-field Hamiltonian which is bi-

QAH / TI

FIG. 1. �Color online� The spinless flux pattern developed by
nearest- and second-nearest interactions that preserves lattice sym-
metry but spontaneously breaks time-reversal symmetry on the
kagome lattice. Charges are uniform on all sites. The solid �blue�
and the dashed �red� lines represent nearest-neighbor and second
nearest-neighbor complex hopping, respectively. For the spinful
case, two copies of the same �opposite� flux patterns for spin-up and
spin-down fermions form the quantum anomalous Hall �topological
insulator� state.
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linear in the fermionic operators and can be diagonalized. In
the following, we focus on uniform phases which are char-
acterized by a �possibly enlarged� unit cell. We work in the
canonical ensemble with a fixed number of electrons Ne. The
free energy at temperature kBT=	−1 is given by

F = − kBT�
k,n

log	1 + e	�Ekn−
�
 + 
Ne + V1�
�i,j�

��ci
†cj��cj

†ci�

− �ni��nj�� + �V2,V3� − terms, �10�

where the chemical potential 
=
�T ,Ne�. The terms in the
second and third line of Eq. �10� arise from �ni��nj� and
�ci

†cj��cj
†ci� in the decoupling Eq. �9� and are not included in

the single-particle energies Ekn. The most general self-
consistency �mean-field� equations are

�F

��ni�
=

�F

��ci
†cj�

=
�F

��cj
†ci�

= 0. �11�

In the following sections, we discuss various solutions of
these equations.

2. Hartree-Fock approximation in the spinful models

For spinful fermions, we decouple the on-site interaction
according to

ni↑ni↓ � ni↑�ni↓� + �ni↑�ni↓ − �ni↑��ni↓� − ci↑
† ci↓�ci↓

† ci↑�

− �ci↑
† ci↓�ci↓

† ci↑ + �ci↑
† ci↓��ci↓

† ci↑� . �12�

We assume the mean-field solutions are described by a colin-
ear spin alignment and therefore, without loss of generality,
we set �ci↑

† ci↓�= �ci↓
† ci↑�=0 in what follows. For the model on

the kagome lattice with V1=V2=V3=0, and at filling frac-
tions f =1 /3 and f =2 /3, we have explicitly checked that
with all the terms �including �ci↑

† ci↓�� all our self-consistent
solutions indeed have a colinear spin alignment. We expect
this property will persist also for finite further neighbor in-
teractions. However, the �ci↑

† ci↓� term has to be kept if one
works at half filling on the kagome lattice where at the mean-
field level a coplanar 120° antiferromagnetic state arises in
the large U limit. The same antiferromagnetic state has also
been found on the triangular lattice.62–64

The further neighbor interaction is decoupled in a similar
way,

ninj � ni�nj� + �ni�nj − �ni��nj� − �
�	

�ci�
† cj	�cj	

† ci��

+ �ci�
† cj	�cj	

† ci� − �ci�
† cj	��cj	

† ci��� . �13�

Again, as mentioned above, we set �ci�
† cj	�=0 for ��	

which is justified if the spin alignment is colinear in the
physical solutions. The structure of the free energy and the
self-consistency equations are similar to Eqs. �10� and �11�
for the spinless models.

III. SPINLESS FERMIONS ON KAGOME LATTICE

In this section we discuss the zero-temperature Hartree-
Fock mean-field phase diagrams at filling fractions f =1 /3
and f =2 /3 for the spinless model on the kagome lattice. We

first introduce the candidate phases and then show the V1-V2
phase diagrams with and without a finite V3 for the two spe-
cial filling fractions. Because at f =1 /3 there are Dirac points
involved, and at f =2 /3 there is a QBCP, the phase diagrams
look rather different for these two cases.

A. Candidate phases

Let us now introduce possible candidate phases for the
spinless model. Besides the topologically nontrivial QAH
phase we also take into account possible charge-density
wave �CDW� patterns.

1. Quantum anomalous Hall phase

A complex Fock term in Eq. �9� breaks time-reversal sym-
metry and can give rise to a topological phase characterized
by a nonvanishing Chern number35 even though there is no
external magnetic field. In the present case, the total flux
through the unit cell must be zero �this follows from periodic
boundary conditions on the unit cell�. However, there are
finite fluxes through the elementary loops and the system
shows an integer quantum Hall effect. This is in full analogy
to Haldane’s model on the honeycomb lattice.5 Such a state
of matter is called a quantum anomalous Hall phase and a
schematic illustration of its microscopic current pattern on
the kagome lattice with finite V1 and V2 is shown in Fig. 1.

The QAH phase preserves the translational symmetry of
the noninteracting model but breaks time-reversal symmetry.
A solution of the self-consistency Eqs. �11� is obtained by
assuming a uniform charge distribution and introducing com-
plex bond expectation values. For nearest-neighbor bonds,
we make the following ansatz:

�ci
†cj� = � exp�i
ij� = �1 + i�2. �14�

A similar ansatz is also made for second-nearest-neighbor
bonds

�ci
†cj� = �� exp�i
ij� � = �1� + i�2�. �15�

There is a gauge freedom in choosing the phase factors 
ij
and 
ij� because only the inclosed fluxes through elementary
loops are gauge invariant. We choose a uniform gauge 
ij

���

= �
��� where the sign is fixed according to the dictions of
the arrows in Fig. 1. We stress that on the kagome lattice a
complex nearest-neighbor hopping can already stabilize a to-
pologically nontrivial phase showing an integer quantum
Hall effect. This possibility has been explored in a model of
a ferromagnet with spin anisotropy.42 Therefore, in contrast
to the honeycomb35,61 and the diamond lattice,36 the nearest-
neighbor interaction V1 alone can, in principle, generate a
QAH phase if the time-reversal symmetry is spontaneously
broken. Indeed, we show below that at f =2 /3 this is the
case. However, at f =1 /3 we find it essential to have a finite
V2 and small V3 in order to stabilize the QAH state.

2. Charge-density waves

An effective way to lower the potential energy is to de-
velop an inhomogeneous charge distribution. In the atomic
limit t=0 and in the absence of further neighbor interactions,
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V2=V3=0, there is a macroscopically degenerate set of
charge configurations which minimize the energy. At f
=1 /3 �f =2 /3� these configurations obey the “one particle
�hole� per triangle” rule. A finite t lifts the degeneracy and in
the limit t /V1�1 the system is effectively described by a
hardcore dimer model on the honeycomb lattice.45,65,66 Its
ground state is the “plaquette” phase with resonating
plaquettes and a periodicity which triples the unit cell.67

Physically, it is the ring exchange of order �t�3 /V1
2 which

stabilizes the plaquette phase. We also note that in the limit
t /V1�1, the system becomes particle-hole symmetric. This
property is clearly lost for small to intermediate interactions,
see below.

Further neighbor interactions V2 ,V3�0 lift the degen-
eracy of the charge configurations in the atomic limit. This
fact complicates a mapping to an effective dimer model for
finite t. In the following, we study the mean-field solutions of
a limited number of different classical charge distributions.
Specifically, we consider three different CDW patterns which
we denote by I, II, and III; see Fig. 2. They were introduced
in Ref. 65 in order to numerically study the role of the ring
exchange. For us it is important to realize that V2�0 favors
CDW I as compared to CDW II and III in the atomic limit.
On the other hand, a third-neighbor interaction V3�0 favors
CDW III over CDW I and CDW II. While the unit cell of
pattern I is equal to the noninteracting unit cell, the unit cell
of pattern II is doubled and the one of pattern III is tripled.
Note that CDW III can be viewed as the classical charge
distribution which corresponds to the plaquette phase of the
effective dimer model in the limit t /V1�1.

For the CDW I, the wave vector specifying its periodicity
is qI= �0,0� and the densities on the three inequivalent sites
of the noninteracting unit cell are given by

�n1�rnm��I = f + �1,

�n2�rnm��I = f + �2,

�n3�rnm��I = f + �3, �16�

where rnm=na1+ma2 with �n ,m��Z�Z, f is the filling frac-
tion, and �1+�2+�3=0. Similarly, the densities in the CDW
II configuration can be written as

�n1�rnm��II = f + �1 cos�rnm · qII� ,

�n2�rnm��II = f + �2 cos�rnm · qII� ,

�n3�rnm��II = f + �3 cos�rnm · qII� , �17�

where we have introduced the wave vector qII=b2 /2. In our
mean-field calculations, we find that mirror symmetric
charge configurations are always favored. Such configura-
tions are obtained by setting �1=2� and �2=�3=−� �or cy-
clically permuted� in Eqs. �16� and �17�. CDW I and II both
break the sixfold rotations symmetry �C6� of the kagome
lattice; CDW I breaks it down to C2, while CDW II breaks it
down even further. In both cases, there are three different
possibilities to choose a mirror symmetry plane. The CDW
order parameter therefore has an additional Z3 freedom.

Another phase with a mirror symmetric configuration of
the densities in the noninteracting unit cell is described by
the CDW III pattern,

�n1�rnm��III = f + 2� cos
rnm · qIII + s
2�

3
� ,

�n2�rnm��III = f + 2� cos
rnm · qIII + �s − 1�
2�

3
� ,

�n3�rnm��III = f + 2� cos
rnm · qIII + �s + 1�
2�

3
� , �18�

where the wave vector is qIII= �b1−b2� /3. We have intro-
duced the parameter s=0,1 ,2 which characterizes the Z3
freedom in the CDW III. Changing the value of s results in a
shift of the pattern as a whole either by a1 or a2.

CDW I does not break the original translation symmetry
and it can alternatively be viewed as a nematic phase.37 The
direction associated with the nematic order is given by

e = �Qx,Qy�/�Qx
2 + Qy

2, �19�

where the components are obtained from the charge and
bond order

Qx =
�n1� − �n2�

�3
� 2

�c2
†c3� − �c1

†c3�

�3
,

Qy =
�n1� + �n2� − 2�n3�

3
� 2

�c1
†c3� + �c2

†c3� − 2�c1
†c2�

3
,

�20�

where the “−” sign refers to the case of 1/3 filling presently
being considered, and the “+” sign refers to the case of 2/3
filling involving a quadratic band touching point. This defi-
nition of the nematic order parameter is in agreement with
the definition given in Eq. �4� of Ref. 37 for the case of 2/3
filling.

In our study, we assume that the real hopping expectation
values �ij = �ci

†cj� obey the same symmetry as the charge dis-
tribution. In Fig. 2, the weak and strong nearest-neighbor
bonds are schematically shown. We find that taking into ac-

CDW I CDW II CDW III

FIG. 2. �Color online� Three different charge-density wave pat-
terns on the kagome lattice studied in this paper. They are charac-
terized by the wave vectors qI= �0,0�, qII=b2 /2, and qIII= �b1

−b2� /3. Blue sites stand for the fermion-rich �poor� sites at 1/3
�2/3� filling fraction and white sites for the fermion-poor �rich� sites
at 1/3 �2/3� filling fraction. The bond expectation values oscillate in
the real space as well. We distinguish strong and weak bonds by
thick and thin lines. For simplicity, we do not show the second-
neighbor bonds.
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count this bond order can significantly lower the energy as
compared to the case where only the Hartree term is kept.
For the mirror symmetric solutions, the unit vector in Eq.
�19� assumes only three different directions,

e1 = ��3,1�/2, e2 = �− �3,1�/2, e3 = �0,− 1� . �21�

These unit vectors will also appear in the low-energy de-
scription of the CDW phases.

3. Other phases

Let us now briefly comment on other possible phases
which are not stabilized in the present models. Dimerized
and trimerized phases were considered in Ref. 59 as pertur-
bations to the TI phase in the noninteracting limit. We find
that for a self-consistency solution with dimerized or trimer-
ized bonds, it is crucial to take into account the charge or-
dering which results from the bond order. However, our nu-
merical results suggest that the charge-density wave patterns
shown in Fig. 2 �where the bond order has the same symme-
try as the charge order� have lower energies than the dimer-
ized or trimerized states. We also note that we do not find a
mixed QAH and CDW phase on kagome lattice, which is in
contrast to the findings on the checkerboard lattice.37

B. Phase diagrams at 1/3 filling fraction

Figure 3 shows the V1-V2 phase diagrams for �a� V3=0
and �b� V3=0.4t. At 1/3 filling, the noninteracting Fermi
“surface” consists of a pair of Dirac points located at K� and
the density of states vanishes linearly at the Fermi energy. As
in related studies,35,36 our mean-field calculations yield a
stable semimetallic �SM� phase for small to intermediate in-
teractions which can be attributed to the absence of density
of states at the Fermi level in the noninteracting limit.

1. CDW phases and nematic order at f=1 Õ3

For large interactions, a CDW phase is stabilized. We find
CDW I for large V1 and V2 because both the nearest-
neighbor and second-neighbor interaction favors CDW I.
The transition from the SM to the CDW I is first order which

is different from the situation on the honeycomb lattice.35

Below we discuss this aspect in more detail. On the other
hand, CDW III is favored for small V2 and large V1. The
transition from the SM to CDW III is second order.

The self-consistent CDW solutions at f =1 /3 are always
gapped �this is in contrast to f =2 /3 where CDW phases with
two nodes appear, see Sec. III C� and it is instructive to look
at the corresponding low-energy models. We first consider
the possibility of a weak CDW I phase and then argue that it
is energetically not favored. In fact, only for a large enough
order parameter, does the CDW I solution have lower energy
than the SM phase. For simplicity, we keep only the Hartree

terms. In lowest order in V̄� �V̄=V1+V2−2V3�, the effective
low-energy Hamiltonian for the two nodes l=� is given by

HI = v �
k,l,�,	

ckl�
† 	� · �k − lA�
�	ckl	 +

3v2

2V̄
�A�2, �22�

where the velocity is v=�3ta /2 and �= ��x ,�y� are Pauli ma-
trices in the effective “sublattice” space. Furtherrmore, we
have introduced an “axial gauge field”59 A which can be
expressed in terms of the CDW order parameter � and the
vector en specifying the Z3 freedom,

A = −
2V̄

v
��n̂z � en� , �23�

where the en are given by Eq. �21�. This field shifts the
position of the Dirac nodes with respect to their original
position at K� and consequently, the CDW I described by
Eq. �22� has nodes. However, Eq. �22� also includes the
electron-electron interaction in the mean-field description
which gives rise to the second term. This term is proportional

to v2 / V̄ and can be viewed as a mass term for the gauge
field. In other words, shifting the nodes by the vector A
costs an energy proportional to �A�2. Therefore, it is ener-
getically not favorable to built up a finite field A and the SM

phase is stable. But once V̄ is big enough, the description in
terms of Eq. �22� breaks down. Solving the full self-
consistency equations, we find a first-order transition from
the SM to the gapped CDW I phase.

Let us now consider CDW III which is stable for small
V2. The wave vector qIII of pattern III connects the two in-
equivalent Dirac points at K�. From a weak-coupling point
of view, CDW III therefore opens a gap by coupling the two
Dirac points. This can be made explicit by studying the low-
energy mean-field Bloch Hamiltonian. For simplicity, we set
V2=V3=0 and consider only the Hartree terms. The Bloch
Hamiltonian for the low-energy degrees of freedom is ex-
pressed in the 4�4 matrix,

HIII�k� = �ĥ�+��k� �̂

�̂† ĥ�−��k�
� . �24�

Here, the Dirac Hamiltonians at K� are given by

ĥ����k� = vk · � . �25�

The coupling between the two Dirac cones can be brought
into the following form
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FIG. 3. The phase diagram of the extended Hubbard model for
spinless fermions at 1/3 filling fraction on the kagome lattice. The
third neighbor interaction is �a� V3=0 and �b� V3=0.4t. SM denotes
the semimetallic phase with two Dirac points, QAH denotes a time-
reversal symmetry broken quantum anomalous Hall phase and
CDW I and III are charge density waves with patterns shown in Fig.
2. Solid lines denote first and dashed lines second-order transitions.
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�̂ = 2V1��1 0

0 − 1
� . �26�

Equation �24� can be diagonalized and we find the following
doubly degenerate energy bands:

E��k� = � �v2k2 + 4�2V1
2. �27�

In particular, an arbitrarily small coupling V1� continuously
opens a gap 4V1��� at the � point in the reduced Brillouin
zone. �The enlarged unit cell of CDW III moves the low-
energy point from K� to �.� This means that the CDW III is
a low-energy instability of the SM phase and explains why
we observe a second-order transition at a critical interaction
strength. We also note that the low-energy theory for the
CDW III, Eq. �24�, carries similarities with the one found for
the Kekulé texture on the honeycomb lattice68 or in the
�-flux model on the square lattice.61 In analogy with these
examples, we expect that topological defects of the CDW III
pattern in the form of a Z3 vortex can give rise to interesting
physics; potentially including charge fractionalization and
anyon statistics.69

2. Topological phase at f=1 Õ3

As shown in Fig. 3�b�, we find that a QAH phase can be
stabilized in a certain region of parameter space. Neverthe-
less, it requires some fine tuning of the different interaction
strengths. First, we do not find a QAH solution for V1 alone
in the parameter space we considered �which is different
from what we find at 2/3 filling, see Sec. III C�. Second, for
a moderate V2 there exists a self-consistent solution of Eq.
�11� which breaks time-reversal symmetry. This QAH phase
is triggered by �2 and �2�, the imaginary part of the nearest-
and second-neighbor hopping expectation values �which in
general also acquire finite real parts�. It turns out that for
V3=0, the CDW I phase has lower energy compared to the
QAH solution. However, a finite V3 increases the energy of
the CDW I solution making the interaction-driven QAH
phase the ground state for small V1 and V3 and moderate V2,
as shown in Fig. 3�b�.

C. Phase diagram at 2/3 filling

The phase diagram of the extended Hubbard model for
spinless fermions at 2/3 filling is shown in Fig. 4. Here, we
set V3=0. The important difference with 1/3 filling is that the
Fermi energy in the noninteracting case lies at a QBCP be-
tween a dispersing and a flat band. As a consequence, the
density of states is finite at the Fermi energy and the system
is unstable to arbitrarily weak interactions.37 In particular, the
semimetallic phase does not survive even for small values of
the interactions. The phase diagram for low to intermediate
interactions looks therefore quite different than the corre-
sponding phase diagram at 1/3 filling.

1. Topological phase at f=2 Õ3

For small to intermediate interactions, we find that the
QAH phase has the lowest energy. This is in agreement with
quite general arguments made about the stability of a

QBCP.37 We have numerically calculated the Chern
number70 associated with this state and found that it is �1,
indicating it is indeed a topological state displaying an inte-
ger quantum Hall effect. Note that V1 alone is enough to
generate the QAH phase because of the particular geometry
of the kagome lattice with a triangle in the unit cell.

Although the QAH phase is the ground state in a rather
large region of parameter space, its gap is exponentially
small. The exponential dependence in mean-field theory can
be found by analyzing the gap equation derived from an
effective two-band Hamiltonian describing the low-energy
behavior around the QBCP. Let us for simplicity set V2=0 in
the following. A finite imaginary part of the nearest-neighbor
bond hopping, �2=Im�ci

†cj��0, couples the two bands
thereby opening a gap. In lowest order in V1, the matrix
describing this coupling is given by

HQAH�k� = � �2
��k� 2i�3V1�2

− 2i�3V1�2 �3
��k�

� , �28�

where �2,3
� �k� is obtained from Eq. �5� by replacing t by

t� = t + V1�0. �29�

Here, �0= �ci
†cj�0=1 /6 denotes the nearest-neighbor hopping

expectation value in the noninteracting model and Eq. �29�
takes into account the effect of the Fock term in lowest order
in V1. The self-consistency equation for �2 reads

1 = V1�
2t�−�/2

2t�+�/2
d�

N���

��2t� − ��2 + 48V1
2�2

2
, �30�

where � is a cutoff energy on the order of t� which is not
accessible in the low energy description, and N��� is the
noninteracting density of states. Solving Eq. �30� for the or-
der parameter �2 yields

�2 =
�

2�3V1

e−1/�V1N0�, �31�

which holds for small values of the dimensionless coupling
constant V1N0. Here, we have introduced the density of states
at the QBCP,54
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FIG. 4. The phase diagram of the extended Hubbard model for
spinless fermions at 2/3 filling on the kagome lattice. The dotted
line indicates where the gap opens in the CDW I phase. For V2

=0, CDW I and II coexist in the gray region and CDW III in the
black region. We set V3=0.
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N0 = N�2t�� =
�3

2�t�
. �32�

The gap is proportional to the order parameter �2 and from
the result Eq. �31� and the eigenvalues of Eq. �28� it follows
that

�QAH = 4�3V1�2 = 2�e−1/�V1N0�. �33�

We have checked that the exponential dependence given in
Eq. �31� is indeed consistent with our full numerical evalua-
tion of the self-consistency equations. A similar exponential
dependence is also found in a one-loop renormalization-
group treatment37 although the dimensionless coupling is
renormalized compared to Eq. �33�.

We now come back to the general situation where both V1
and V2 are finite. In general, the QAH phase is driven by
both a complex first- and second-neighbor hopping expecta-
tion value. Furthermore, one can define an explicit
deformation58 of a tight-binding model with complex
nearest-neighbor hopping on the kagome lattice to show that
its ground state is adiabatically connected to the ground state
of a model with real nearest-neighbor hopping and only com-
plex second-nearest-neighbor hopping. Therefore, the QAH
phase generated by V2 belongs to the same topological class
as the one generated by V1. Figure 5 shows the fluxes �1,2,3
through three elementary triangles forming the unit cell. In
this figure, we set V2=V1 /2. Because of the periodic bound-
ary conditions on a unit cell, the fluxes satisfy 2�1+�2
+3�3=0. Moreover, they are all finite indicating the pres-
ence of an imaginary hopping amplitude in both the first- and
the second-neighbor effective hopping.

2. CDW phases at 2/3 filling

For intermediate to large interaction strengths, a CDW
phase is stable. At V2=0 and large V1, the CDW III phase has
the lowest energy. However, the difference in energy per site
compared to CDW I is only on the order of 10−3t and be-
comes smaller the bigger V1. As a result, a very small but
finite V2 is sufficient to stabilize CDW I over CDW III. In
contrast to the situation at filling fraction f =1 /3, at f =2 /3
CDW III cannot profit from a “nesting” condition. The en-
ergy gain compared to CDW I is therefore very small. At
V2=0, a first-order phase transition from a QAH state to a
CDW I �II� state takes place at V1�1.47t. Numerically, we
cannot resolve any difference in the energy between CDW I
and II for V2=0. Interestingly, there are nodes in the CDW I
�II� phase where the gap vanishes. The transition from the
QAH phase to the CDW I state with nodes is an example
where a transition from a gapped phase �QAH� to a gapless
phase �CDW I� occurs by increasing the interaction strength,
	see Fig. 6�c�
.

The gapless CDW I persists even for finite V2. Figure 6
shows the CDW order parameter �, the bond order �=�s

−�w defined as the difference between two nearest strong
and weak bonds and the magnitude of the gap as a function
of V1 for fixed V2= t. We can see that a finite CDW order is
accompanied by a finite bond order. In fact, both types of
orders jump to a finite value at the transition V1c1

from the
QAH to the CDW I phase. Note, however, that the gap is
zero up to a second critical interaction strength V1c2

indicat-
ing the presence of band degeneracy points below V1c2

. At
V1c2

a kink is observed in the order parameters and the gap
gradually starts to increase.

In the following, we show that the gapless CDW I phase
results from the splitting of the QBCP into two nodes.37 We
notice that the change in bond order is one order of magni-
tude smaller than t and therefore can be neglected for the
moment. We find the following low-energy Bloch Hamil-
tonian:
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FIG. 5. �Color online� The fluxes �1,2,3 through elementary tri-
angles in the QAH phase at filling fraction f =2 /3. These elemen-
tary triangles form the unit cell, as shown in the inset. Because of
the periodic boundary conditions on the unit cell, the net flux is zero
and the individual fluxes satisfy 2�1+�2+3�3=0. We have set
V2=V1 /2 and V3=0.
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HCDW�k� =��2
��k� + t�u cos�2��

t�u

2
sin�2��

t�u

2
sin�2�� �3

��k� − t�u cos�2�� � ,

�34�

where u=2�V1+V2���+3�� / t�. The renormalized hopping t�

is given by Eq. �29� with �0 replaced by �̄= ��s+2�w� /3 and
we have neglected the Fock terms generated by the V2 inter-
action �this term is negligible in practice�. In Eq. �34�, we
have introduced polar coordinates �k ,�� which are defined
by k ·en=k cos �. Note that right at the � point the angle � is
not well defined. Equation �34� should be contrasted with Eq.
�28� for the QAH phase: as opposed to the QAH order pa-
rameter, the CDW order parameter introduces an anisotropic
angle-dependent effective coupling between the two bands.
Expanding the dispersion around the � point, we find for the
eigenvalues of Eq. �34�,

E2�k,��/t� = 2 − 	k2 + �B�k,��
/8, �35�

E3�k,��/t� = 2 − 	k2 − �B�k,��
/8. �36�

The function B�k ,�� is given by

B�k,�� = k4 − 16k2u cos�2�� + 64u2. �37�

It has roots at two points where the two bands touches,

ku = �8u, � = 0,� . �38�

This analysis shows that a finite CDW I order splits the
QBCP into two nodes moving along the line defined by the
vector en. The bottom right panel of Fig. 6 illustrates the
situation for e3. We have calculated the Berry phase �winding
number�37 of the QBCP and found that it is 2�
�=0 mod 2��. The corresponding Berry phases �winding
numbers� of the two nodes appearing in the gapless CDW I
are both �. Thus, the QBCP does splits into two Dirac points
with Berry phases � conserving to total winding number, as
it was suggested in Ref. 37.

D. Comparison with existing work

Recently, several numerical works65,66 appeared dealing
with the charge-density wave order on the kagome lattice at
f =1 /3 or f =2 /3. Here, we want to briefly relate our results
with their findings. In Nishimoto et al.’s work,65 the authors
considered the large V1 limit with vanishing V2. They
showed that CDW III is the ground state that is consistent
with the plaquette state obtained from an effective quantum
dimer model on the honeycomb lattice.67 In this strong inter-
acting limit, f =1 /3 and f =2 /3 are equivalent and numerical
calculations65 confirm that CDW III is stabilized by the ring
exchange process proportional to �t�3 /V2. Interestingly, frac-
tionalized excitations with charge e /2 have recently also
been reported in the strong-coupling limit.66

Our mean-field calculation cannot capture the resonating
nature of the quantum dimer model and is not valid in the
strongly interacting limit. However, CDW III in the mean-

field treatment can be viewed as the “classical” configuration
of plaquette states. At 1/3 filling fraction, the CDW III is
found to be more stable than either CDW II or I at large V1,
and the energy difference between them becomes smaller as
V1 grows. This is consistent with Nishimoto et al.’s work.
Furthermore, we predict a metal-insulator transition takes
places at V1c=3.1t at 1/3 filling, which is in quite good
agreement with their result V1c=4.0t. However, at 2/3 filling,
our mean-field results differ significantly from theirs. We
find that the leading instability at small interactions is the
QAH state that spontaneously breaks time-reversal symme-
try and has an exponentially small gap.37 A metal-insulator
transition takes place around V1c=2t in our study while Nish-
imoto et al. reported a metal-insulator transition at finite
V1c=2.6t.

IV. SPINFUL MODEL ON THE KAGOME LATTICE

Let us now turn to the spinful model on the kagome lat-
tice. The additional spin degrees of freedom add consider-
able complexity to the problem and introduce several more
potential phases.

A. Candidate phases

The SM and the CDW phase are equivalent to those in the
spinless model. Here, we discuss additional phases which
appear in the spinful model.

1. Topological insulator and quantum anomalous Hall state

The topological insulator and quantum anomalous Hall
state are both stabilized by a complex Fock term of nearest
or second-neighbor interaction which gives rise to a complex
hopping amplitude. The difference between TI and QAH
phases can be described by the 2�2 matrix �ci�

† cj	� defined
in the spin space as discussed below.

The QAH state breaks the time-reversal symmetry but not
the spin rotation SU�2� symmetry. Therefore, the most gen-
eral form of the uniform phase consistent with these require-
ments is

�ci�
† cj	� = 	��1 + i�2��0
�	, �39�

where �1 and �2 are real numbers and �0= 1̂ is the identity
matrix. A phase with a finite �2 shows an anomalous quan-
tum Hall effect and a nonzero Chern number.

On the other hand, the TI does not break time-reversal
symmetry but breaks the SU�2� spin-rotation symmetry
down to U�1�. The most general form is therefore

�ci�
† cj	� = 	�1�0 + i�2�n� · �� �
�	, �40�

where �1 and �2 are both real numbers and n� is a unit vector
describing how the SU�2� spin-rotation symmetry is broken.
In other words, spin-rotation symmetry is only preserved for
rotations around n� . Without loss of generality, we can assume
n� = n̂z. We note that allowing �1, �2, and n� to be spatially
dependent allows one to study topological defects of the or-
der parameter, such as skyrmions, providing a potential route
for exotic superconductivity.71 On the other hand, in contrast
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to their two-dimensional counterpart, three-dimensional
interaction-driven TIs completely break the spin-rotation
symmetry and their order parameter involves a rotation ma-
trix. Again, it is possible to study topological defects which
host protected modes.36

A short inspection of the mean-field free energy of the TI
and the QAH phase shows that these two phases are degen-
erate on the mean-field level. It is likely that fluctuations
around the mean-field state might favor one phase over the
other. Because the TI breaks the continuous spin-rotation
symmetry, there are Goldstone modes in the ordered phase.35

It was suggested35 that quantum fluctuations associated with
these modes lower the ground-state energy of the TI as com-
pared with the QAH phase which does not have Goldstone
modes. This argument appears to be confirmed via “unbi-
ased” functional renormalization group methods.35 We do not
see any reason for those arguments not to hold in the present
case as well.

2. Spin-charge-density waves

There is another class of phases that emerges as a result of
the special filling fractions, the nonbipartite nature of the
kagome lattice and the additional spin degrees of freedom.
We term it “spin-charge-density wave” �SCDW� because it
involves both a spin and a charge-density wave. In our mean-
field calculations, we restrict to phases which do not break
the translational symmetry. By solving self-consistency
equations, we identify two types of SCDWs which are stable
for some interaction parameters.

The first pattern, SCDW I, is characterized by the follow-
ing distribution:

�n1↑� = f + � + m , �41a�

�n1↓� = f + � − m , �41b�

�n2↑� = f + � − m , �41c�

�n2↓� = f + � + m , �41d�

�n3↑� = f − 2� , �41e�

�n3↓� = f − 2� . �41f�

Here, � and m are the charge-density and spin-density order
parameter, respectively. Furthermore, we assume that the
symmetry of the bond expectation values is determined by
the symmetry of the spin-charge configuration and therefore,
three different spin-resolved bond expectation values have to
be introduced. The phase SCDW I is schematically shown in
Fig. 7�a�.

The other configuration, SCDW II, is characterized by the
following distribution:

�n1↑� = f − � + m , �42a�

�n1↓� = f − � − m , �42b�

�n2↑� = f − � + m , �42c�

�n2↓� = f − � − m , �42d�

�n3↑� = f + 2� − 2m , �42e�

�n3↓� = f + 2� + 2m . �42f�

The schematics of the SCDW II are shown in Fig. 7�b�. In
addition, we also introduce four different spin-resolved bond
expectation values to make it consistent with the above spin-
charge distribution.

Both SCDWs have zero magnetization in the unit cell.
However, they differ in that SCDW I has antiferromagnetic
order in the a1 direction, ferromagnetic order in the a2 and
a1−a2 directions while SCDW II has ferromagnetic ordering
in the a1 direction but antiferromagnetic ordering in the a2
and a1−a2 directions.

In the next section, we will see that SCDWs arise in the
case of large U but small or moderate V1 and V2. At 1/3
filling fraction, SCDWs can be understood as a means to
reduce the on-site interactions by single occupancy at two
sites in a unit cell. Therefore they become unstable when V1
or V2 becomes large and CDW dominates. We stress that the
solutions of SCDWs are saddle points of the free energy
instead of a global minimum in the usual situation, therefore,
one has to solve self-consistency equations directly to obtain
the SCDW solutions.

3. Bond-order wave

Next we consider the bond-order wave �BOW� as has
been found in Ref. 72 for the t-J model at f =1 /3 under quite
general conditions. The BOW is characterized by a uniform
charge distribution and a bond order which breaks the inver-
sion symmetry of the unit cell by establishing strong bonds
�s for the up triangles and weak bonds for the down triangles
�w. It is schematically shown in Fig. 7�c�.

(b)

(c) (d)

(a)

BOW FM

SCDW IISCDW I

FIG. 7. �Color online� Schematic of four types of candidate
phases on the kagome lattice for 1/3 filling fraction: �a� SCDW I �b�
SCDW II �c� bond-order wave �BOW� and �d� ferromagnet �FM�.
Upward arrows and downward arrows denote the magnetization on
each site. The same/different circles represent same/different num-
bers of fermions on corresponding sites. For simplicity we only
show nearest bonds �the addition of two spin-resolved bonds� and
do not show the second-nearest bonds. Stronger bonds are shown in
bold.
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4. Ferromagnet

The ferromagnetic �FM� state is characterized by a uni-
form magnetization density m. The spin densities are given
by

�ni↑� = f + m/2, �ni↓� = f − m/2, �43�

and we introduce the Fock terms

�↑ = �ci↑
† cj↑�, �↓ = �ci↓

† cj↓� . �44�

The Fock terms are different for nearest-neighbor and
second-neighbor bonds. Equations �43� and �44� are used as
an ansatz to solve the self-consistency equations numerically.
A finite magnetization of the form Eq. �43� introduces a Zee-
man field which uniformly lowers the energy of the spin-↑
electrons with respect to the spin-↓ electrons by Um. At f
=1 /3, the maximally polarized state is obtained when there
are two up electrons per unit cell. At f =2 /3, the maximally
polarized state corresponds to 3 up electrons and one down
electron per unit cell. At both filling fractions the saturated
value of the magnetization is msat=2 /3. In the next section,
we will see that the maximally polarized FM state arises in
the large U limit.

B. Phase diagrams at 1/3 filling

We first discuss the role of U and V1 and set V2=V3=0.
This allows for a direct comparison with the phase diagram
at 2/3 filling shown below.

1. U-V1 phase diagram at 1/3 filling

The U-V1 phase diagram is shown in Fig. 8. Similar to the
spinless model, we find that the SM is stable for small to
intermediate interactions which we again attribute to the van-
ishing density of states at the Fermi energy in the noninter-
acting limit. For dominant V1 interaction, we find that the
CDW III is stable and the transition from SM to the CDW III
is second order. For dominant on-site interaction U, a SCDW
phase is stabilized. Both patterns SCDW I and SCDW II are
stable for some values of the interaction. We note that for
small V1 there is a second-order transition from the SM to
the SCDW II with nodes.

For intermediate U and V1, we find BOW is the favored
ground state on kagome lattice at 1/3 filling.72 It requires that

U is of the same order as V1 to suppress the CDW III. On the
other hand, it requires a reasonable value of V1 to generate
the bond order at all. However, we expect that the superex-
change mechanism �second order in t /U�, which is not cap-
tured in our mean-field treatment, could stabilize this phase
also for smaller V1.72

At quite large on-site interactions �U�20t�, a FM phase
is stabilized �not shown�. The FM state is fully polarized at
the mean-field level and has an energy gain of

eFM − eSM = �̄2 − �̄1 +
V

24t
��̄1

2 − �̄2
2 − 2�̄1�̄2� −

U

3
�45�

per unit cell as compared to the SM phase. In Eq. �45�, we
have introduced the average kinetic energy of the filled band
n,

�̄n =
1

N
�

k
�n�k� , �46�

where N is the number of unit cells in the lattice and the
dispersion relation �n�k� is given in Eq. �5�. We note that the
presence of a FM state for large interactions is consistent
with numerical studies.45

Finally, we note that the QAH/TI phase does not occur in
the absent of a finite V2. Again, this is in agreement with the
spinless case.

2. U-V2 phase diagram at 1/3 filling

The U-V2 phase diagram of is shown in Fig. 9. Like in the
spinless case at 1/3 filling fraction, we add a small V3 inter-
action to suppress CDW I for finite V2 and stabilize TI/QAH.
The overall structure is quite similar to the U-V1 phase dia-
gram. However, the charge-density wave has pattern I for
large V2 since large V2 does not favor CDW III but CDW I.
BOW phase is now replaced by the QAH/TI phase. That the
topological phase appears in the middle of the phase space
seems to be a rather universal feature in systems which have
a Dirac point and has also been reported on the honeycomb
and the diamond lattice.35,36 For large U�6t, SCDW II is
stabilized and we find that it is gapless. A first-order phase
transition from SCDW II to SCDW I occurs when V2 in-
creases and finally CDW I dominates for large V1. Note a
FM state occurs at even larger U�20t �not shown�.
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FIG. 8. The phase diagram of the spinful model at 1/3 filling on
the kagome lattice. The SCDW I and II phase involve both a finite
charge and spin-density-wave order parameter. Furthermore, when
U competes with V1 a BOW is found. Solid lines indicate first order
and dashed lines second-order transitions.
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FIG. 9. The U-V2 phase diagram for V1=0 and V3=0.4t. An
interaction-driven TI appears for finite U and V2. Solid lines indi-
cate first-order and dashed lines second-order transitions
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C. Phase diagram at 2/3 filling

For 2/3 filling, we focus only on the U-V1 phase diagram.
The phase diagram is shown in Fig. 10. Most importantly, we
found that the dominant instability for arbitrarily small V1 is
to the QAH/TI phase and this phase survives also for finite
U. Increasing V1 further, there is a first order transition to a
gapless and then gapped CDW.

We note that for V1�0.3t, the energy difference between
various states is very small: SCDW I and II as well as
QAH/TI have energy differences of less than 10−6t per unit
cell and we had to use a very high precision in the numerical
calculation to resolve the phase diagram. However, for larger
values of U the FM phase is clearly favored in the mean-field
calculation. This is again a maximally polarized FM state.
The energy density as compared to the SM phase is

eFM − e0 = − ��̄1 + 2�̄2� −
V1

24t
��̄1

2 − �̄2
2 − 2�̄1�̄2� −

U

3
,

�47�

and we have used the definition Eq. �46�. While the energy
gain for the on-site repulsion U is the same in the SCDWs, it
is the kinetic energy which favors the FM phase over the
SCDWs for large U.

V. SPINLESS FERMIONS ON DECORATED
HONEYCOMB LATTICE

In this section, we briefly examine the possibility of an
interaction-driven QAH state for spinless fermions on the
decorated honeycomb lattice and discuss the relationship of
the QAH phase with other competing phases. The study of
interaction effects on this lattice is partially motivated by a
recent paper that exactly solved56 the Kitaev model on this
lattice in the strongly interacting limit of the underlying fer-
mions; our previous paper established the existence of TIs on
this lattice in the noninteracting limit.58 One natural question
to ask is what will happen for intermediate interaction
strengths where the Hartree-Fock mean-field approximation
is still valid. We work at half filling and t�= t and show that
the QAH state is the leading instability in the presence of

interactions. Moreover, it occupies a rather wide region in
the phase diagram.

The Fermi surface at 1/2 filling lies at a quadratic band
crossing point in the center of the Brillouin zone, where a flat
band crosses a quadratic band. It allows the emergence of a
QAH phase quite easily without any fine tuning of interac-
tion strengths. We consider the nearest-neighbor interaction
V1 and second-nearest-neighbor interaction V2 on this lattice.
For the V1 interaction, we can introduce a dynamically gen-
erated flux pattern in the two triangles. We also introduce a
second-neighbor flux in the same way as in the kagome lat-
tice 	see Fig. 11�a�
. One key difference, however, is that we
have to allow the possibility of different values of intertri-
angle complex hopping parameters and intratriangle complex
hopping parameters due to nonequivalence of the two hop-
ping parameters in the noninteracting limit. One can easily
show that if the flux through a unit cell is zero and time-
reversal symmetry is broken, a QAH state is realized similar
to the one on kagome lattice. In our calculation, we also find
it is possible to have a BOW state if the phase of the flux is
zero or �. The BOW is very close in energy to the QAH state
�10−6t� but appears to lose out for the parameter ranges we
studied.

We will restrict ourselves to q=0 CDW that originates
from the Hartree term of the mean-field Hamiltonian. At 1/2
filling, one can see that V1 and V2 frustrate each other, in
contrast to the kagome lattice at 1/3 filling where V1 and V2
both stabilize a CDW state. The CDW pattern we found
based on the mean-field self-consistency equations is shown
in Fig. 11�b�. Among several CDW solutions we have found,
we identify this particular CDW with a mirror symmetry as
having the lowest ground-state energy. Real bond orders
from the Fock term have also been introduced implicitly to
be consistent with this CDW pattern.

The phase diagram is shown in Fig. 12. Along the hori-
zontal axis where V2=0, a BOW phase competes with the
QAH for small interaction but is higher in energy by �10−6t.
A CDW phase develops for V1�1.9t.
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FIG. 10. The U-V1 phase diagram for V2=V3=0 at 2/3 filling
fraction. Similar to the spinless case at 2/3 filling fraction, CDW I
has nodes which separates itself from gapped phase by a dashed-
dotted line. Similarly, SCDW I has nodes for small interaction
strengths.

(b)(a)

QAH CDW

FIG. 11. �Color online� �a� the flux pattern developed by inter-
actions that preserves the lattice symmetry but spontaneously
breaks time-reversal symmetry on decorated honeycomb �star� lat-
tice. The blue solid line with an arrow �two arrows� represents a
nearest-neighbor intratriangle�intertriangle� complex hopping while
the red dashed line with an arrow represents the second-neighbor
complex hopping. �b� the favorable CDW pattern from solutions of
self-consistency equations. We have used different combinations of
color and markers to show the mirror symmetry. Real first-neighbor
bonds consistent with symmetry of the CDW pattern have been
assumed �second-neighbor bonds not shown�.
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Generally, the energy gain from forming a uniform distri-
bution of fermions and complex bonds between neighbor
sites is very small compared to that in the CDW phases.
Therefore, the QAH phase is the only favorable ground state
when either �i� there are no CDW solutions or �ii� the CDW
states are frustrated or suppressed and therefore have much
higher ground-state energy. The first case has been seen in
the kagome lattice at 2/3 filling fraction for small interac-
tions, and the second situation is realized in the present case
of the decorated honeycomb lattice at 1/2 filling where a
QAH phase occupies a large region of the phase diagram.
This is intimately related to the mutual frustration between
the V1 and V2 interaction at 1/2 filling. To see this, let us
consider the large V2�V1 limit. One finds that in order to
minimize the interaction V2, the preferred ground state is the
CDW configuration where three sites in a top triangle are
almost occupied while the three sites in the bottom triangle
in the same unit cell are almost empty. This is exactly the
sublattice potential perturbation considered in Ref. 58 that
destabilizes the quantum spin Hall phase. Though this sub-
lattice potential appears artificial at first sight, we show here
that it can result from a many-body interaction. Clearly this
configuration is not stable if V1 is increased beyond a critical
value. This explains the fact that at large V1 or V2 the CDW
phase is the ground state, while the QAH state is the ground
state when V1 is comparable to V2.

It is possible to perform a similar mean-field calculation
for the spinful case, and one expects that a TI/QAH phase

will dominate at small interactions strengths for 1/2 filling.
However, the details are beyond the scope of this paper and
are left to future work.

VI. CONCLUSIONS AND SUMMARY

We have presented comprehensive Hartree-Fock mean-
field calculations of the phase diagram for spinless and spin-
ful fermions described by the extended Hubbard model on
the kagome lattice and decorated honeycomb lattice. We
have established the existence of interaction-driven topologi-
cal phases at filling fractions where either Dirac points or
quadratic band crossing points are involved. We find that
both TI and QAH phases can be described by conventional
complex bond order parameters. Quite generally, we find that
at 2/3 filling on the kagome lattice and 1/2 filing on the
decorated honeycomb lattice �where a quadratic band cross-
ing point is involved in the noninteracting limit�, the TI/QAH
phase is the leading instability for small interaction strengths.
We have observed also that interaction-driven topological
phases only exist beyond a critical interaction value when the
Fermi surface lies at Dirac points at 1/3 filling on kagome
lattice �in the zero interaction limit�. Furthermore, we discuss
in detail various other phases including charge-density wave,
spin-charge-density wave, bond-ordered wave, and ferro-
magnets on the two lattices.

An important lesson drawn from this study is that systems
whose noninteracting band structures involve quadratic band
crossing points can be unstable to topological phases with
arbitrarily weak interactions, even in the absence of micro-
scopic spin-orbit coupling. We hope this work will aid in the
search for topological states of matter by enlarging the class
of candidate materials to include those which do not have
strong microscopic spin-orbit coupling but do have certain
features �such as quadratic band touching points� in their
noninteracting band structure.

Note added in proof: Recently we became aware of a
related work which also discusses the spontaneous symmetry
breaking in the kagome lattice.73
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